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SOME PROPERTIES OF CLOSURE-SEQUENTIAL

APPROACH SPACES

Lee Hyei Kyung

Abstract. In this paper we introduce the category of closure-
sequential approach spaces, CSEQ. And study some properties
of closure-sequential approach space.

1. Introduction

In ([9]), we introduced the measure of countable compactness in the
category AP of approach spaces and contractions and investigated some
invariance properties of measure of countable compactness with regard
to image and product. In approach theory, countability will still play
a role as far as topological spaces are concerned because topological
spaces are nicely embedded as a simultaneously concretely reflective and
coreflective subconstruct of AP.

In |TOP|, (X,=) is called closure-sequential if every sequential neigh-
borhood V , of a point x, is a neighbourhood of that point (V is a se-
quential neighbourhood of x if whenever {xn}n∈N → x, {xn}n∈N ∈ V
eventually).
Clearly each first-countable space, and hence each metric space and each
discrete space, is closure-sequential and they fall into the class of topo-
logical spaces which can be given completely by the knowledge of their
convergent sequences.

In the paper we will define the category of closure-sequential approach
spaces and will prove the category of closure-sequential approach spaces
is embedded as a concretely coreflective subconstruct of AP. And we
will show that for a closure-sequential approach space, the measures of
sequential compactness and countable compactness coincide.
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2. Preliminaries

We shall use the following symbols :
R+ := [0,∞[, R∗+ :=]0,∞[, R+ := [0,∞].

F(X) will stand for the set of all filters on X, and U(X) will stand for
the set of all ultrafilters on X. If F is a given filter on X, then we will
denote by F(F) the collection of all filters on X which are finer than F ,
and by U(F) the collection of all ultrafilters on X which are finer than
F .

We recall that, in an approach space X, the adherence operator is
defined as

αF + sup
F∈F

δ(x, F ), ∀x ∈ X, ∀F ∈ F(X)

where δ : X × 2X → R+ is the distance on X determining the approach
structure.
Finally, if |SET| is the class of all sets and X ∈ |SET|, we shall denote

the set of all finite (resp. countable) subsets of X by 2(X) (resp. 2((X))).
We recall also that a filter F on X is called countable if it has a filter

base with a countable number of elements.
By Fc(X)(resp. Fe(X)) we denote the countable (resp. elementary)

filters on X.
For an approach space the measure of countable compactness is de-

fined as
µcc(X) := sup

ψ∈Ψ
inf

K∈2
(Γψ)

sup
z∈X

inf
k∈K

ψ(k)(z)

where Ψ = {ψ : Γψ ⊂ N→ ∪x∈XA(x) | ∀x, ∃n ∈ Γψ : ψ(n) ∈ A(x)}.
For an approach space the measure of sequential compactness is de-

fined as

µsc(X) = sup
(xn)n∈N∈r(X)

inf
k↑:N→N

inf
x∈X

λ < xk(n) > (x).

If X is an approach space then the measure of Lindelöf of X is defined
as

L(X) = sup
φ∈

∏
z∈X Φ(z)

inf
Y ∈2((X))

sup
z∈X

inf
y∈Y

φ(y)(z)

and for the pMET∞ space (X, d) we have

L(X) = inf
Y ∈2((X))

sup
z∈X

inf
y∈Y

d(y, z)

and, equivalently [2],

L(X) = sup
F∈Fw(X)

inf
x∈X

αF(x) = sup
F∈Fw(X)

inf
x∈X

sup
F∈F

inf
y∈F

d(x, y)
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where Fw stands for the set of filters with the countable intersection
property.

In [9], for an extended pseudometric approach space X, we have,

µsc(X) = µcc(X) = L(X) = µc(X).

3. Closure-Sequential Spaces

Now, in the frame of AP we begin with some definitions.

Definition 3.1. An approach space (X, (A(x))x∈X) shall be called
closure-sequential if for each µ ∈ [0,∞]X and each x ∈ X,

µ ∈ A(x) ⇐⇒ {xn}n∈N ∈ r(X) :

inf
n∈N

sup
m≥n

µ(xm) ≤ λ{xn}n∈N(x).

A good definition of (approach) closure-sequential spaces will give
us, for topological approach spaces, the topological definition of closure-
sequential spaces.

Proposition 3.2. A topological space (X, T ) is closure-sequential in
TOP if and only if X is closure-sequential in AP.

Proof. Suppose (X, T ) is sequential and consider µ ∈ [0,∞]X for
which,

(3.1) inf
n∈N

sup
m≥n

µ(xm) ≤ λ{xn}n∈N(x)

for all {xn}n∈N ∈ r(X).
Consider, ∀ε > 0, the set Uε := {x ∈ X | µ(x) < ε} and suppose a
sequence {xn}n∈N has a point x in Uε as a limit point. It follows from
(3.1) that

inf
n∈N

sup
m≥n

µ(xm) = 0

which means that {xn}n∈N is eventually in Uε.
Consequently, Uε is sequential neighbourhood of the point x and, further,
a neighbourhood of x. Now, since µ− ε ≤ 1Uε , we obtain µ− ε ∈ φ(x).
Because of the arbitrariness of ε and of the saturation of φ(x), it follows
that (X,AT ) is closure-sequential.
Conversely, suppose X is closure-sequential (as an approach space) and
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consider U ⊂ X sequential neighbourhood of a point x ∈ X. To see that
U is also a neighbourhood of x, we put

µ = θU ∈ [0,∞]X .

Then if, for an arbitrary sequence {xn}n∈N, we have λ{xn}n∈N(x) = 0,
it will follow that x is a limit point of {xn}n∈N and, thus, {xn}n∈N is
eventually in U which turns into

inf
n∈N

sup
m≥n

µ(xm) = 0

Upon invoking 2.2.8 in [11], the fact that X is a closure-sequential ap-
proach space means that U is a neighbourhood of x (in T ).

It is important to know, from an structural point of view, the follow-
ing results:

Proposition 3.3. Every first countable approach space is a closure-
sequential space.

Proof. Suppose X has a countable basis for each of the ideals A(x)
of local distances,

A(x) =< {ϕ1, ϕ2, ..., ϕl...}l∈N > .

We replace ϕl by ∨lk=1ϕk whenever necessary and we may assume that
{ϕl}l∈N is increasing.
Consider x ∈ X, A ⊂ X. Then

δ(x,A) = sup
l∈N

inf
y∈A

ϕl(y)

which means that, for all n ∈ N, we can find ln ∈ N with

inf
y∈A

ϕln(y) > δ(x,A)− 1/n.

This allows us to choose xn ∈ A with

δ(x,A) ≥ ϕln(xn) > δ(x,A)− 1/n.

Now clearly,
λ{xn}n∈N(x) = sup

l∈N
inf
n∈N

sup
m≥n

ϕl(xm)

≤ sup
l∈N

inf
n∈N

sup
m≥n

ϕlm(xm)

= inf
n∈N

sup
m≥n

ϕlm(xm)

= δ(x,A).
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With this we can conclude that, in a first-countable approach space
(X, δ), given x ∈ X and A ⊂ X, it is always possible to find a sequence
{xn}n∈N within A with the property

δ(x,A) = λ{xn}n∈N(x).

Next we take µ ∈ [0,∞]X .
If, for all {zn}n∈N ∈ r(X) the following holds

inf
n∈N

sup
m≥n

µ(zm) ≤ λ{zn}n∈N(x),

then, in particular,

inf
n∈N

sup
m≥n

µ(xm) ≤ δ(x,A),

from which it follows

inf
y∈A

µ(y) ≤ δ(x,A),

in other words, that µ ∈ A(x).

Theorem 3.4. CSEQ (the category of closure-sequential approach
spaces) is embedded as a concretely coreflective subconstruct of AP.
For any approach space X,A), its CSEQ-bicoreflection is determined
by the following collection of ideals as approach system:
given x ∈ X,

Φccs(x) := ({ϕ ∈ [0,∞]X | ∀{xn}n∈N ∈ r(X) :

inf
n∈N

sup
m≥n

ϕ(xm) ≤ λ{xn}n∈N(x)})

where λ is the limit operator for the approach space (X,A).

Proof. It is easily verified that (Φccs(x))x∈X is indeed an approach
system for a closure-sequential (approach) space and that idX : (X,Φccs)→
(X,A) is a contraction. Now, suppose that (Y,Φ) ∈ |CSEQ| and that

f : (Y,Φ) → (X,A)

is a contraction. We consider ϕ ∈ Φccs(f(y)). Then, given {yn}n∈N ∈
r(Y ),

inf
n∈N

sup
m≥n

ϕ({f(ym)}m∈N) ≤ λ({f(yn}n∈N)(f(y))

≤ λY ({yn}n∈N)(y)

which, since Y is a closure-sequential space, means that ϕ◦f ∈ Φ(y).
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As is well known, countable compactness and sequential compactness
coincide for first-countable approach spaces. Since sequential compact-
ness is always bigger or equal than countable compactness, the following
proposition establishes their equality on the larger category of closure
-sequential approach spaces

Proposition 3.5. For a closure-sequential approach space (X, (A(x))x∈X)
the following holds:

µsc(X) = µcc(X).

Proof. Suppose ε0 > 0 can be found such that

µsc(X) > µcc(X) + ε0.

This means there exists a sequence {x0
n}n∈N for which

inf
x∈X

λ{x0
k(n)}n∈N(x) > inf

x∈X
α{x0

n}n∈N(x) + ε0

and this holds for every {x0
k(n)}n∈N, subsequence of {x0

n}n∈N.
We can then find a point x0 ∈ X such that, for any other point x0

n in
the sequence {x0

n}n∈N,

sup
ϕ∈A(x0)

ϕ(x0
n) > sup

ϕ∈A(x0)
sup
n∈N

inf
m≥n

ϕ(x0
n) + ε0

which allows us to choose ϕn ∈ A(x0), for each n ∈ N, with

ϕn(x0
n) > sup

l∈N
inf
m≥l

ϕn(x0
m) + ε0.

Next we define µ ∈ [0,∞]X in the following way

µ(y) =

{
ϕn(x0

n), if y = x0
n element of {x0

n}n∈N;

0 otherwise.

Thus, for a given {yn}n∈N ∈ r(X), we first observe that inf
n∈N

sup
m≥n

µ(ym) > 0

if, and only if, ∀n ∈ N, ∃mn ≥ n such that ymn is an element of the
sequence {x0

n}n∈N.
We denote {znl }l∈N the subsequence of {x0

n}n∈N for which, for each l ∈ N,
there exists ln ≥ n with yln = znl .



Closure-Sequential Approach Spaces 411

Then, as a consequence of the definition of µ

inf
n∈N

sup
m≥n

µ(ym) = inf
n∈N

sup
l∈N

µ(yln)

≤ sup
θ∈A(x0)

inf
n∈N

sup
l∈N

θ(yln)

≤ sup
θ∈A(x0)

inf
n∈N

sup
m≥n

θ(ym)

= λ{yn}n∈N(x0).

We are now in the situation to conclude that µ ∈ A(x0), since X is a
closure-sequential approach space. But that would easily implies:

α{x0
n}n∈N(x0) ≥ sup

l∈N
inf
m≥l

µ(x0
m)

= sup
l∈N

inf
m≥l

ϕm(x0
m)

> sup
l∈N

inf
m≥l

α{x0
n}n∈N(x0) + ε0

= α{x0
n}n∈N(x0) + ε0.
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